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llhngamle 1, together with the related tantazoles, e.g. tantazole B 2. constitute a unique family of 
biologically interesting alkaloids, which show structures based on the linear fusion of four or five successive 2.4- 
disubstituted thiazolineIoxazole rings terminating in a 2-cinnamyl or 2-isopropyl thiazotie. W thiangazole 
has been isolated from the gliding bacterium Potyangium sp, 1 rhe tantaz.oles ate produced by the terrestrial bIuc- 
green alga Scytonema mirubik.* Thiaagamle 1 shows a one hundred percent inhibition of W-1 infection at 
4.7pM, and no cell toxicity at 4.7mM giving a selectivity index of >106; the compound also discrimi~tes 
between HIV-l and HIV-2. The structure of thiangazole was elucidated by spectroscopic methods, and its 
absolute configuration was derived as shown in 1 by chemical degradation and correlation of CD spectroscopic 
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w2 this stereochemical assignment was more recently confii by X-ray crystallographic analysis.3 
Synthetic work by Fukuyama and Xu4 has shown that the original structllre assigned to tantaz.ole B needed to he 
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revised to 2, in which the stereocenne in the isopropyl substituted thiazoline ring has the R-(a-methyl), rather 
than the S-(&methyI) configuration. In contemporaneous structural and synthetic studies with the related 
mirabazole family of thiazoline/thiazole metabolites. e.g. mirabazole C 3, from blue-green algae, other 
reseatchers5~6*7 have concluded that all the mbabazoles and tantazoles have the same R-configuration at the same 
stereocentres in their isopropyl substituted thiazobne rings. In this L&&r we dcsctibe a concise total synthesis of 
5R,8S,l Id-thiangazole 1, using a strategy based on a cycloeondensation between the R&nethylcysteine 
derived bi&hiazoline nitrile 4 and the oxazole 5 as a key step (Scheme 1). 

Scheme 1 

Thus, a cyclocondensation reaction between R-2-methylcysteine methyl ester hydrochloride 68 and 
cinnamoniuile (MeOH, Et3N, reflux, 48h)9 fmt led to the cinnamyl substituted Cmcthylthiazoline ester 7, as a 
pale yellow semi-solid in 40% yield. lo The ester 7 was next converted into the niuile 9 via the corresponding 
amide 8 [EtOH-aq NH3, 2S°C, 24h (71%); then Ph+CCl,t. 50°C. 2h (74%)], l1 and a second 
cycloconclensation reaction between 9 and the methyicysteine 6 then produced the 6&hiazoline (10; 54%) as a 
yellow oil, [a],, -168.8 (c 2.47 in CH$&). Elaboration of the ester 10 to the corresponding amide, mp 137- 
40°C (65%). and then to the nitrile intermed& (4; 15%). [a], - 158.9 (c 2.14 in CH&!li), wss then carried out 
using the same procedures that were used to convert 7 into 9 (Scheme 2). 

6 7 8 

I . . . lu 

Reagents : i. *HC-CHCN. EbN. MeOH. A (40%): ii, EtOH-aq NH3 25T (7 1%); iii, FPh3, Cal.,, m, 50~ (7496); 
iv, 6, Et& MeoH. A (54%) 

scheme2 
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The 2-rnethylcysteine derived oxaxole 5 was synthesised from KS-Boc protected 2-methylcysteine 11 l* as 
shown in Scheme 3. Thus, a coupling reaction between 11 and (*)-threonine methly ester hydrochloride 
@yBOP, Et3N, CH&, then Thr-HCl, EtjN, 25T, 24h) l3 first led to the corresponding amide- (12; 68%) 
which was then converted into a mixture of diastereoisomers of the oxaxoline 13 in 70% yield following 
treatment with Burgess magent (THP, mflux, 12h). l4 Oxidation of 13 using nickel peroxide, or better using t- 
butylperoxybenzoate in the presence of copper(I) bromide (GH6. reflux, 3h). l5 next produced the oxaxole (14; 
34%) which was then &protected in the presence of anhydrous hydrochloric acid in ether (refiux 3h) leading to 
the R-2-mdh@ysteine derived oxazole (5; 68%) which was obtained as a white solid, mp 153T @cc.); [aID+ 

5.2 (cl.3 in EtOH). 

11 12 13 

~ iv c42Me 

5 14 

Rwws : i. PYBOP.‘~ Et3N. Cm% then W-Thr-HCI, Etfl, 25T (68%); ii, BRASS reagent,‘4 J-I-IF (709b); g, ‘Bu~ph, 

WWG CsH6. & (34%); iv, HCl-l&O (68%) 

Scheme 3 

A condensation reaction between the his-thimline nimile 4 and the Zmethylcysteine derived oxaxole 5 
(BtsN, MeOH, reflux, 48h) produced the tris-thiline oxazole Cl 5: 35% or 70% based on recovered nitrile 4 ] 
as a yellow oil. Finally, treatment of the ester 15 with methylamine (33% in EtOH. 25T. 4h) followed by 
chromatography and crystaliisation gave thiangazole (1; 75%) as colourless crystals, mp and mixed mp 141 T 
(from acetone) with natural thiangazole (mp 142°C). The synthetic thiangazole showed an optical rotation of [EL]~ 

-275 (c 0.1 in MeOH) [cf natural thiangazole has [a$-, -287 (c 0.1 in MeOH)], and its pmr, cmr, ir, and uv 
spectroscopic data were identical to those obtained for natural thiangamle isolated from Poiyungium sp. 
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